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This paper presents the design, optimization, and evaluation of a mass spectrometry-based electronic
nose (MS e-nose) for early detection of unwanted fungal growth in bakery products. Seven fungal
species (Asperygillus flavus, Aspergillus niger, Eurotium amstelodami, Eurotium herbariorum, Eurotium
rubrum, Eurotium repens, and Penicillium corylophillum) were isolated from bakery products and
used for the study. Two sampling headspace techniques were tested: static headspace (SH) and
solid-phase microextraction (SPME). Cross-validated models based on principal component analysis
(PCA), coupled to discriminant function analysis (DFA) and fuzzy ARTMAP, were used as data
treatment. When attempting to discriminate between inoculated and blank control vials or between
genera or species of in vitro growing cultures, sampling based on SPME showed better results than
those based on static headspace. The SPME—MS-based e-nose was able to predict fungal growth
with 88% success after 24 h of inoculation and 98% success after 48 h when changes were monitored
in the headspace of fungal cultures growing on bakery product analogues. Prediction of the right
fungal genus reached 78% and 88% after 24 and 96 h, respectively.

KEYWORDS: Electronic nose; mass spectrometry; fungal growth; bakery products; fuzzy ARTMAP; ANN;
LDA; PCA

INTRODUCTION growth, or even as taxonomic identifiers that can determine the

Microbial spoilage is a major problem in bakery products Presence of a given species. This idea was initially exploited in
since it can induce nutritional losses, off-flavors, and formation the field of cereals3, 4). Research studies correlated fungal
of mycotoxins or potentially allergenic spores. This situation &ctivity with the production of volatile metabolites, GGnd
can lead to an organoleptic deterioration of already marketed CFU- Schnirer et al.2) and Magan and Evans (5) reviewed
bakery products, which indeed threatens consumers’ confidenceSome studies where GEMS had been used to characterize and
and, therefore, results in important economical losses. This is@nalyze volatile profiles of fungal cultures, listing volatiles
the reason for a growing need to find a method to conveniently identified in different growing substrates. More recently, 6C
assess the degree of fungal growth in bakery products at a veryMS intensity peaks from key volatiles have been used by Olsson
early stage and before it becomes visitl. ( et al. (6,7) to evaluate the mycological quality of barley grains

Classical techniques based on microbiological methods suchand to predict levels of ochratoxin A and deoxynivalenol.
as CFU (colony-forming units) determination are time-consum-  Since the volatile headspace is complex and should be
ing and they cannot give on-line responses. Specific chemical evaluated as a whole, technigues that mimic the human olfactory
markers such as ergosterol have now become commonly usedystem (the so-called electronic noses) have already been
as a method for the quantification of fungal biomass in food. proposed. Electronic noses based on different types of nonspe-
However, they are nonspecific, they do not provide any cific sensors (i.e., metal oxide, conducting polymer, or quartz
information on the species present, and they require a laboriousmicrobalance sensors) have been evaluated in fungal, bacterial,
sample preparation (2). and yeast monitoring in food such as bakery produbtscereal

On the other hand, it is known that fungi produce volatile grains 6—8), cheese9), water (0), bread (1), meat (2), and
compounds during both primary and secondary metabolism thatmilk (13). Despite the efforts, e-noses based on nonspecific
can be used as markers to detect food spoilage, unwanted fungademiconductor sensors still suffer from serious drawbacks such
as poor sensitivity, poor selectivity, and long-term drift. Novel

55;&)%fesp0f!ld_igg auth(g) ({elephone)34 977 559619; fax+34 977 electronic olfactory systems based on mass spectrometry seem
, e-mall jJorezmes@etse.urv.es). . . . .
T Universitat Rovira i Virgili. to improve drift problems with respect to other classical e-nose
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10.1021/jf049399r CCC: $27.50  © 2004 American Chemical Society
Published on Web 09/09/2004



Fungal Growth Detection with MS E-nose J. Agric. Food Chem., Vol. 52, No. 20, 2004 6069

drift. Nevertheless, this paper does not consider drift as an issueperformed. Equilibration time was fixed at 5 min in the three batches
since measurements were done in a short period of time. of measurements. The temperature of the loop and the transfer line
Preconcentration and extraction techniques such as solid-phas#ere aways kept at & above oven temperature to avoid condensation.
microextraction (SPME) can increase the sensitivity and repro- Each vial was p!'essurlzed with helium (i.e., the carrier gas) for 12 S.
ducibility of MS e-noses¥4, 15). Since Nilsson et al16) used Then, the_ 3-mL |nternal loop of the headspace autosampler was filled
SPME as a solvent-free extraction method for analysis of volatile with volatiles coming from headspace of the fungal cultures, and finally

i . icill . h volatiles were injected into the gas chromatograph. The goal was to
metabolites emitted biPenicillium species, many researchers determine whether the instrument could distinguish between inoculated

have used SPME as a tool for sampling volatile fungal ang plank vials. A secondary goal was to observe whether the system
metabolites (1718). was able to classify samples according to fungal genera.

This paper presents a study on the design, optimization, and In a second experiment, equilibration temperature was kept constant
evaluation of a MS-based electronic nose for early fungal growth at 50°C and equilibration time was increased to 50 min. The remaining
detection in bakery products. Two different experiments were parameters were kept as described above. A total of 32 samples (four
carried out. The first one was designed to choose the bestreplicates of eight different types of vials) were measured.
sampling technique (SH or SPME) to be coupled to a MS-based ~ (B) SPME—MS E-nose MeasurementsSampling based on SPME
e-nose in order to monitor fungal growth. The second study was performed with a 75-um Carboxen/PDMS fiber purchased from
was designed to evaluate the performance of the MS e-noseSlJpeICO (Supelco Park, Bellefonte, PA). Jeld@)(compared four

imal fi o v d . fin Vi din si SPME fibers used to perform an extraction of volatile metabolites from
optimal configuration in early detection of in vitro and in situ fungal cultures. This study showed that the highest amount of isolated

growing fungal cultures. volatiles expressed as total peak area was observed for fibers based on
Carboxen (CAR/PDMS and CAR/DVB/PDMS). Fibers based on
MATERIALS AND METHODS Carboxen are the best choice in terms of sensitivity to extract low
) _ ) molecular weight analytes such as low-chain alcohols, ketones, and
~Samples Seven fungal species¢pergillus flavus, AFAspergillus aldehydes. The main volatile metabolites involved in early stages of
niger, AN; Eurotium amstelodami, EAEurotium herbariorum, EH;  fyngal growth that have been cited in the scientific literature belong to
Eurotium rubrum, EUEurotium repens, ER; anéenicillium corylo- this type of molecules. As the goal was to detect the production of
phillum, PE) were isolated from bakery products. One isolate from each {hese volatiles as early as possible, priority was given to sensitivity
species was used for the present study. and that is why a CAR/PDMS-based fiber was chosen. Prior to any

For in vitro studies, 0.90 aw slants of 2% wheat flour agar medium extraction, the fiber was conditioned following the manufacturer's
were prepared in 20-mL headspace vials and needle-inoculated withrecommendations. In each measurement, the fiber was introduced into
10°° spores mL* suspensions (adjusted by use of a Thoma chamber) the vial and exposed to the headspace of fungal cultures for 20 min at
of the fungal cultures mentioned above. Uninoculated vials with agar room temperature. Thermal desorption of volatiles trapped on the fiber
medium were used as control blanks (BL). was conducted for 3 min in the chromatograph injection port at 300

In situ studies were performed on bakery product analogues prepared®C. The split valve was closed during desorption. The fiber was always
as described by Abellana et all9), adjusted to a water activity of  |eft five additional minutes to ensure its complete cleaning.

0.95. Pieces measuring 8 8 x 20 mm were introduced in 20-mL Three in vitro replicate vials of each fungal species plus control
headspace vials. Analogues were needle-inoculated at random with they|gnks were prepared and incubated for 10 days. Each replicate was
seven cultures mentioned above and, again, uninoculated analoguesneasured three times by the SPMES e-nose. Therefore, a total of
were used as control blanks. Once sealed, all vials were incubated at72 measurements were performed. The aim was to discriminate
25°C until their measurement. Incubation periods ranged from 24 hto inoculated samples from blank vials and to evaluate whether the
7 days depending on the experiments carried out. instrument could classify samples according to their genera and species.

MS E-nose Configuration. A Shimadzu QP 5000 GC/MS (Shi- In Vitro Fungal Growth Monitoring. The next goal was to evaluate
madzu Corp., Tokyo, Japan) was used to implement a MS-based e-nosethe performance of the MS-based e-nose to monitor early stages of
The instrument was equipped with a deactivated PR-100052>6 m  fungal growth. SPME was used since it was determined that it was the
0.25 mm ID precolumn (Teknokroma, St Cugat Del Vallés, Barcelona, best sampling method. Two replicates of each of the seven fungi plus
Spain) that only acted as a transfer line from the injector port to the two control blanks were grown on 2% wheat flour agar. Samples were
mass detector. The column was kept isothermal at*Z5@ coelute kept under incubation and extractions were made once a day, obtaining
all volatile components in one single peak. This implies that the a total of 16 experimental points at 48, 72, 96, and 168 h after
components in the headspace of the vials passed directly to the massnoculation.
detector without any chromatographic separation. In this manner, for |y Sjitu Fungal Growth Monitoring. A final experiment designed
any given measurement, the resulting mass spectrum gives a fingerprintg simulate a real application was performed. The aim was to use the
that is characteristic of the volatiles present in the headspace of samplesfinal prototype in order to discriminate between spoiled and safe bakery
Helium flow was set to 1.4 mL/min. The mass spectrometer operated products. Eight blank control vials containing cake analogues, eight
in the electron impact ionization mode (70 eV) and acquired in a scan replicate vials containing cake analogues inoculated with EA, and four
range fromm/z35 to 120 at 0.5 scan/s. lon source temperature was set replicates inoculated with ER, EU, EH, AN, AF, and PE were measured.

at 250°C_- _ _ SPME extractions and MS e-nose measurements were performed in
Two different sampling techniques (SH and SPME) were evaluated every vial 24, 48, 72, 96, and 168 h after inoculation. Overall, 40
as the best candidates to be coupled to the MS-e-nose. experimental points were obtained for each sampling time (1, 2, 3, 4,

Choosing the Best Sampling Technique. (A) Static Headspace  and 7 days after inoculation). The system was also evaluated as a tool
Optimization. Sampling based on a static headspace autosampler wasto discriminate among fungal species.
done by coupling an HP-7694 (Agilent Technologies) to the MS-based  Multivariate and Pattern Recognition Analysis. Data generated
e-nose. All experiments dealing with MS e-nose optimization were by the e-nose device (in any of its different configurations) were
carried out on in vitro growing cultures for 10 days. The main sampling collected and processed by use of written-in-house software based on
parameters that influence sensitivity when working with the SH MATLAB 6.5 (The Mathworks, Natick, MA). An unresolved single
technique, namely, temperature of equilibration and vial equilibration peak was obtained for each measurement. Averaging mass spectra along
time, were modified to improve fungal culture classification and fungal the detected peak generated a response spectrum. Since measurements
growth detection. were performed in scan mode framiz 35 to 120, the average intensity

To select the optimal temperature, three oven temperatures, 50, 80,0f each mass could be used as a variable (or sensor). In this manner,
and 100 °C, were tested. For each temperature, a batch of 16 an experimental data matrix was built. The number of rows was the
measurements corresponding to two replicates for each of the sevemumber of samples measured in each experimental batch, while the
species plus two additional control blanks incubated for 10 days was number of columns was 86, corresponding to ee®h scanned. A
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principal component analysis (PCA) was applied to each responsetape 1. Success Rate Comparison between the Two Different
matrix, achieving a reduction in dimensionality. By use of the first 10 sampling Techniques Studied?

principal components, 100% of the total data variance was gathered.

A reduced response matrix having 10 columns corresponding to scores total
of the first 10 principal components was obtained. Then, a discriminant goal discrimination exptl success
function analysis (DFA) was performed on the reduced matrix. technique between points failures rate (%)
Eigenvalues obtained from the DFA were used as in_put_ variables to a HS—MS, 100 °C fungal growth 16 2 88
fuzzy ARTMAP neural network that gave a categorization of fungal genera 16 7 56
cultures according to genera or species depending on the application. Hs-ms, 50 min fungal growth 32 1 97
The performance of the model was evaluated by the leave-one-out genera 32 13 59
cross-validation approach. In this method, a different row (measurement) SPME-MS fungal growth 72 0 100
from the original matrix is left out at each iteration. The remaining genera 72 0 100
rows conform the training matrix, which is reduced by a PCA species 72 6 92

projection, processed by a DFA, and fed to the fuzzy ARTMAP training
algorithm after scaling coordinates between 0 and 1. The procedure is 2 Data processing was performed with PCA-DFA—fuzzy ARTMAP models. The
then validated with the vector that had been left out. The validation goal was to classify between inoculated and uninoculated vials (fungal growth)
vector (not used for training) is then projected against the PCA model. and between genera or species. All tests were performed over in vitro growing
Then, the PCA scores are projected onto space of the canonical variablesultures.
of the trained DFA. Finally, the DFA projection coordinates of the
validation vector are fed to the neural network model, which produces

a classification result. The whole process is repebtéiches,N being *  Aspergillus
the number of measurements included in the data matrix, so that each ©  Uninoculated
measurement is used in one iteration for evaluation purposes and in - Eg;?glﬁ[”l;‘m
— 1 iterations for training. The fact that for each iteration the validation

vector is not used in the training process ensures that the vector is >
completely new to the processing system. 3

Factor 2 (7%)

RESULTS AND DISCUSSION

Reduction of m/z Variable Dimensionality by Use of PCA.
All the results cited bellow were obtained by applcation of
multivariate analysis to the response matrix. This matrix was
formed by as many rows as experimental measurements made
in each study and as many columnsna& variables scanned.
According to Dittmann and Nitz20), thesen/zvariables can
be used as an array of sensors to emulate a classical electroni
nose. In their paper, they claim that, in most cases, it is not
useful to work with such a great number of sensors and only a
very small number of ion fragments are suitable for setting up
a sensor array since meaningless fragments introduce noise int
the system. They also consider that there is no way to correctly
selectm/zfragments, unless there is a previous full chromato-
graphic run. Finally, they discuss reliable strategies for selecting
the optimal array configuration, based on previous knowledge
of the analytes that are important for the application. This
previous knowledge is normally based on time-resolved analysis
to identify (and quantify) the volatiles present in the headspace

of the samples to be studied. This leads, unavoidably, to more ) ] )
traditional analytical techniques such as GC—MS. whether the vial was inoculated or not. When attempting to

On the other hand, applying a PCA analysis leads to a linear determine the funggl genera, the success rate decreased to 56%
combination ofm/z variables that gathers the highest amount (Table 1). Measuring samples at 100C may accelerate
of variance and compresses information by eliminating redun- ©Xidation processes modifying the qualitative volatile pattern
dancy and collinearity. In this manner, the best combination of Profiles. This may be very difficult to control and could
m/z variables can be chosen without the need to perform a costly intreduce noise in our mathematical model.
and lengthy initial study to determine the most relevant ion  Therefore we designed a second experiment where temper-
fragments to be monitored. This means that previous fully ature of equilibration remained constant at°&Dand equilibra-
resolved chromatographic runs can be avoided since no previougion time was increased. The concentration of an analyte in the
knowledge from the samples is required. headspace usually follows a linear dependence with equilibration

The reduced response matrix obtained from the PCA analysistime until it comes to a point where the concentration becomes
is then used as the input matrix to perform a DFA. DFA is a stable. At this point volatiles reach equilibrium and achieve their
supervised model that finds a function-based projection that maximum concentration in the headspace, while the composition
minimizes distances between measurements from the sameof volatile patterns remains stable. That should enhance the
category and maximizes distance between centroids of eachrepeatability on MS e-nose measurements. Sanz et al. (21)
category. Finally the two first factors resulting from the DFA studied equilibration time iArabicacoffee and they concluded
were used as input variables to a fuzzy ARTMAP neural that when the equilibration time increased, the quantity of
network as described before. volatile compounds also increased but in an irregular way,

Static Headspace Optimization A preliminary analysis of depending on the chemical family considered. Similarly, every
the results on increasing oven temperature in SH was performedanalyte from each fungal culture has a different equilibration

15 20

5 10
Factor 1 (93%)
Figure 1. Two-dimensional DFA plot from 10 days in vitro growing cultures
measured with the SH-MS e-nose configuration (50 min equilibration time,
Eo °C temperature).

by plotting PCA scores at 50, 80, and 100 separately. At 50

nd 80°C those plots did not show any clustering, and samples
with fungal contamination and blank vials overlapped. At 100
°C, inoculated samples clustered together, clearly separated from
blank vials. Setting a headspace oven temperature of°CO0
permitted the extraction of a larger quantity of volatiles, which
enhanced the sensitivity of the system, allowing it to achieve a
better discrimination than at 50 or 8G. A cross-validated fuzzy
ARTMAP classification of the 16 experimental points at 100
°C achieved an 88% success rate when trying to determine
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Figure 2. Two-dimensional projections from 10 days in vitro growing cultures measured with the SPME-MS e-nose configuration. (a, left) DFA,; (b, right)
PCA.

x  Aspergillus Table 2. Results Achieved by Use of a PCA-DFA-Fuzzy ARTMAP
° gg;’(‘)‘t’iﬁ‘r‘r"ate" Model for Classifying Blank/Inoculated Vials (Fungal Growth) and
40, *  Penicillium Genera?
F 204~ : : fungal goal differentiation total success
8 o growth (h) between exptl points failures rate (%)
[{e]
Py In Vitro Measurements
g 204- 48 fungal growth 16 0 100
genera 16 0 100
1'38 72 fungal growth 16 0 100
_ 100 genera 16 0 100
g 96 fungal growth 16 0 100
9 0
PC2 (24.18%) 0 50100 PC1 (63.94%) genera 16 0 100
] ) ) o ) 168 fungal growth 16 0 100
Figure 3. Three-dimensional PCA scores plot from 10 days in vitro growing genera 16 0 100
cultures measured with the SPME-MS e-nose configuration. In Situ Measurements
. » . . ) 24 fungal growth 40 5 88
time. An equilibration time equal to 50 min was chosen to ensure genera 40 17 58
maximum concentration of volatile compounds on the head- 48 fungal growth 40 1 98
space genera 40 9 78
Thi ’ di d tabili d itivity. Si f 72 fungal growth 40 0 100
~ This ensured improved repeata ility and sensitivity. Since four genera 40 9 78
in vitro replicates for each type of sample were prepared, 32 % fungal growth 40 0 100
measurements were performed. A 2D DFA pleigure 1) of genera 40 5 88
the reduced response matrix shows two clearly separated clusters 168 Lue"nge"i'agm""th 38 g 132

corresponding to inoculated and blank vials, respectively. A

fuzzy ARTMAP neural network achieved a 97% success rate

in the discrimination between inoculated and uninoculated vials.

This success rate fell down to 59% when attempting to

discriminate among fungal genera (Table 1). to classify samples according to their fungal species reached a
Results of SPME Sampling.A total of 72 measurements  92% success rateléble 2). The system misclassified seven

were performed to test in vitro SPMBEMS measurements.  measures out of 72, confusing two EH, three ER, one AF, and

Therefore, the resulting data matrix had 72 rows and 86 columnsone AN. All failures were mistaken between species from the

(m/zranged from 35 up to 120Figure 2a shows a 2D DFA same genus.

plot of the restricted response matrix, whiHgure 2b shows Both PCA and DFA plots show a clear distinction between

a 2D score plot from the original data matrix. Samples belonging E. amstelodamand otheilEurotiumspecies. These results seem

to Aspergillus Penicillium andEurotiumclustered together with  to be in good agreement with previous works where Bdrjesson

low dispersion and without overlapping with blank controls, etal. @, 4,22) described some differences between the volatile

which were clearly separated from the rest. The first two factors pattern profiles fronE. amstelodamand other fungal species

from DFA accounted for 95% of the variance in the data. In due to its lower percentage of alcohol release (50% Hor

the case of the PCA, the variance gathered by the two first amstelodamis 80% in other fungal species studied).

factors decreased to 88%. In this caenicilliumandEurotium The SPME technique gave better results than the SH

isolates appear to overlap. However, use of the third principal technique when applied as the sampling system coupled to our

component leads to discrimination between these two generaMS-based e-nose. It achieved better repeatability and it was

(Figure 3). In both 2D DFA and PCA plot&. amstelodami more sensitive due to its ability to concentrate volatile analytes.

can be distinguished from the otHeurotiumspecies. Looking SPME allows distinguishing between fungal genera or even

at Aspergillus samples, there is a clear separation between between several species. On the basis of these results it was

speciesA. flavzus and A. niger. decided to continue the studies with the SPM#&S e-nose
Applying DFA coupled to a fuzzy ARTMAP neural network  configuration since the instrument is meant for the fast detection

model resulted in a 100% success rate when discriminating of fungal growth at early stages.

between fungal growth and blank vials. Also a 100% classifica-  In Vitro Fungal Growth Monitoring. Table 2 shows the

tion was achieved when classifying fungal genera. The attemptsuccess rates in the classification of in vitro samples between

@ Tests were performed for in vitro and in situ growing fungal cultures, and
sampling was always performed for SPME.
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Figure 4. Two-dimensional PCA scores and loadings plots corresponding to 48, 72, 96, and 168 h of headspace monitoring of in vitro growing cultures.

two categories (inoculated and blank vials) and between four Therefore, depending upon the molecules present in the head-
categories (corresponding to three fungal genera plus blankspace, there will be different mass intensities detected by the
vials). These measurements were performed between 48 andnstrument.
168 h after inoculation. By application of DFAuzzy ART- Making a loadings and scores plot on the response matrix
MAP on the reduced response matrix, the system achieved aenables us to establish qualitative correlations between samples
100% success rate after 48 h from inoculation when attempting and variablesryz fragments). We constructed PCA models for
to discriminate both between inoculated and blank samples andin vitro measurements at 48, 72, 96, and 16Bigure 4 shows
among fungal genera. This demonstrates that the SPMI&- 2D PCA score plots with their corresponding loading plots for
based e-nose is a suitable tool for on-line in vitro monitoring each batch performed at the different incubation times. Electron
and early detection of unwanted fungal spoilage. impact ionization mode (EIl) causes considerable fragmentation,
One of the advantages of a MS-based e-nose over e-nosegeading to overlapping fragments and parent ions. Because of
based on gas sensors or other devices is the possibility to obtairthe poor selectivity of thevz fragments, they cannot be directly
structural information from the samples. Intensity on the mass correlated with the presence or absence of a volatile. Neverthe-
detector is a function of the ion patterns in the fragmentation less, mapping pattern fragmentation by means of loading plots
of each molecule present in the headspace of fungal cultures.could give some relevant information. In this case ions corre-
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Figure 5. Two-dimensional DFA projections corresponding to 24, 48, 72, 96, and 168 h of headspace monitoring of in situ growing fungal cultures.

sponding to the highest loading values for the first three PC volatiles produced by grain spoilage fungi and listed the most
were kept to perform loading plotBigure 4 shows an inverse ~ common volatiles found and the fungal species involved. The
correlation between uninoculated control blanks amid 44. major volatile compounds were found to be 3-methyl-1-butanol,
This inverse correlation means that samples with low or no 2-methyl-1-propanol, 1-octen-3-ol, and other 8-carbon ketones
presence ofm/z44 correspond to blank controls and the rest and alcohols.

share a high presence af/z 44. Since fragment ofn/z 44 Anyway, the origin of these fragments cannot be ensured.
corresponds to the base peak of £Le relationship between  As Figure 4 shows, the loading maps remained almost
the evolution of accumulated G@nd fungal growth was found  unchanged from 72 to 168 h of incubation. The only remarkable
to be significant. The MS-based e-nose differentiates betweenchanges in the loading maps appear betweem the plots corre-
inoculated and uninoculated samples mainly on the basis of thesponding to 48 and 72 h of fungal growth. Finally, the presence
production of CQ by fungi. This is in good agreement with  of ion 55 close to ions 42 and 41 can indicate the raising of
the literature. Borjesson et aB) measured the concentration 3-methyl-1-butanol after 178 h of fungal growth.

of CO, produced byA. flavus A. amstelodamiPenicillum In Situ Fungal Growth Monitoring. Results obtained on
cyclopium, and~usarium culmorunduring 14 days of fungal  the in vitro preliminary experiment encouraged us to study the
growth and showed a continuous rise in©®ncentration. They performance of the electronic nose on in situ growing cultures
also studied the volatiles released by six fungal species on grainsover bakery product analogues. This is a much more realistic
and found that the relationship between accumulate: CO but difficult task since analogues can produce their own volatile
evolution and fungal growth was significar22). The predomi- pattern profiles; these volatiles produce additional signals in the
nating presence of GOn our PCA model is due to the sealing mass detector that introduce noise into the fungal growth
of the vials with silicon septa once they have been inoculated. predictive model.

The presence of other ions suchra&g 41, 42, 43, 45, 46, 55, Table 2 summarizes the results obtained when bakery
and 57 can be considered as second-order and less relevant ionproducts analogues were measured along the first stages of
They can be associated to other related fungal metabolites sucHungal spoilage. In situ monitoring was performed 24, 48, 72,
as ethanol r/z 45 and 46), 3-methyl-1-butanoin{z 41, 42, 96, and 168 h after inoculation. Distinction between blank and
and 55), 2-methyl-1-propanol (mA1—43), and 1-octen-3-ol  inoculated samples reached an 88% success rate 24 h after
(m/z57). This is in good agreement with the review paper by inoculation, 98% after 48 h, and 100% after 72Higure 5
Magan and Evangj. In their study they reviewed the types of shows 2D DFA plots corresponding to fungal cultures sampled
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at 24, 48, 72, 96, and 168 h after incubation. In the first plot  (5) Magan, N.; Evans, P. Volatiles as an indicator of fungal activity
(24 h after inoculation), blank vials overlap with inoculated and differentiation between species, and the potential use of
samples. As the time of incubation increases, the dispersion electronic nose technology for early detection of grain spoilage.
between samples belonging to the same class decreases and the _ J- Stored Prod. Re000,36, 319—340. ) _
difference between classes grows. After 48 h, uninoculated and (6) Olsson, J.; Borjesson, T.; Lundstedt, T.; Schndrer, J. Volatiles
blank samples can be clearly distinguished. This is in good for.mycologlcal quality grading of barley grains: determlnatlons
agreement with our prediction model that achieved a 98% using gas chromatographynass spectrometry and electronic

) nose.Int. J. Food Microbiol.2000,59, 167—178.
success rate after 48 h. Moreover, samples belonging to the same (7) Olsson, J.; Bérjesson, T.; Lundstedt, T.; Schnirer, J. Detection

genus appear to Clu_ster to_gether,_a t(_andency that becom(_as more and quantification of ochratoxin A and deoxynivalenol in barley
pronounced as the time of incubation increases. Once againthese  grains by G-MS and electronic noset. J. Food Microbiol.
results are in good agreement with our predictive model because 2002,72, 203—214.

after 48 and 72 h the instrument achieved a 78% success rate (8) Bérjesson, T.; EKlév, T.; Jonsson, A.; Sundgren, H.; Schniirer,

and 88% after 96 h in the prediction of fungal genera J. Electronic Nose for Odor Classification of GrairGereal
From the results obtained on the monitoring of in vitro fungal Chem.1996,73, 457—461.

growth, it can be concluded that during the first 24 h fungi are ~ (9) Trihaas, J.; Van den Tempel, T.; Nielsen, V. Electronic nose:

mainly producing C@and other common metabolites associated Smelling the microbiological quality of cheeseroc. ISOEN

2002, 380—384.
(10) shin, H. W.; Llobet, E.; Gardner, E.; Hines, E. L.; Dow, C. S.
Classification of the strain and growth phase of cyanobacteria

with primary fungal growth and structures formation such as
3-methyl-1-butanol, 2-methyl-1-propanol, and 1-octen-3-ol in-
dgl)caf[tlve frothur:gaI pr_ese_gce.t.]:_ACCtprdlng to B:)gesson T)tl al.t in potable water using an electronic nose systHpEE Proc.
(3), it seems that species identification may not be possible a Sci. Meas. Technol. 2000, 147, 158—164.

this early stage, since the compounds produced in the highest (11) Keshri, G.; Voysey, P.; Magan, N. Early detection of spoilage

amounts are similar for different species. The volatile pattern moulds in bread using volatile production patterns and quantita-
profile is, therefore, very similar and does not allow discrimina- tive enzyme assays. Appl. Microbiol.2002,92, 165—172.

tion between species. Characteristic volatiles that might allow (12) Vernat-Rossi, V.; Garcia, C.; Talon, R.; Denoyer, C.; Berdague
species classification are mainly produced during secondary J. L. Rapid discrimination of meat products and bacterial strains
metabolism. After 48 h of incubation, the system is able to using semiconductor gas sensdens. Actuators, B996,37,
predict fungal genera with a 78% success rate, which implies 43-48.

that secondary metabolism has started. Sporulation happens 72 (13) Magan, N.; Paviou, A.; Chrysanthakis, I. Milk-sense: a volatile
96 h after inoculation depending on fungal species, which leads sensing system recognise spoilage bacteria and yeast in milk.

Sens. Actuators, B001,72, 28-34.

(14) Marsili, R. T. SPME—MS—MVA as an Electronic Nose for the
Study of Off-Flavors in Milk.J. Agric. Food Chem1999,47,
648—654.

(15) Marsili, R.Flavor, Fragance and Odor Ansis; Marcel Dek-

to an increase in several volatile compounds generating different
pattern profiles for each fungal genus or species. This allows
the best discrimination results in our model.

Taking into account the results obtained with the measure-

ments perfo_rmed on in situ samples, a rez_al qual_ity analysis ker: New York, 2002.

application in a bakery factory seems feasible. Since SPME (16) Nilson, T.; Larsen, T. O.; Montanarella, L.; Madsen, J. O.
sampling time was 20 min and desorption time was 5 min, each Application of headspace-solid-phase microextraction for the
measurement took 25 min to be executed. In a real application, analysis of volatile metabolites emitted Bynicillium species.
many SPME fibers can be used in parallel (e.g., four) and the J. Microbiol. Methods1996, 25, 245—255.

system can get a throughput of a measurement every 5 min. (17) Demyttenaere J. C. R.; Morifia R. M.; Sandra, P. Monitoring
Moreover, since some quality control departments already have and fast detection of mycotoxin-producing fungi based on
GC—MS equipment, they can convert their units into a MS- headspace solid-phase microextraction and headspace sorptive
based E-nose in a rather straightforward manner, just coupling Sgtsraclt;’?”_ifstshe volatile metabolites. Chromatogr. A2003,

the optimal sampling system and using additional pattern (18) Jelen, H. H. Use of solid-phase microextraction (SPME) for

recognition software. - . . o
. . filing f I volatil tabolited.ett. Appl. Microbiol. 2003,
The next step should be focusing on tuning the prototype to ngO ggg_uzr%g;\ voalie metaholies.etl. Appl. Microblo

Work_in a bakery plant, where it would be trained to monitor a (19) Abellana, M.; Benedi, J.; Sanchis, V.: Ramos, A. J. Water activity
certain number of samples from each batch. These measurements  * 4ng temperature effects on germination and growtBbtium

made at the quality control laboratory would allow detection amstelodami E. chevalieri and E. herbariorumisolates from

of batches likely to be spoiled before their expiration date and bakery productsJ. Appl. Microbiol. 1999,87, 371—380.

thus produce a rejection decision before the batch leaves the (20) Dittmann, B.; Nitz, S. Strategies for the development of reliable
production plant. QA/QC methods when working with mass spectrometry-based

chemosensory systenfSens. Actuators, B000,69, 253—257.
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