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This paper presents the design, optimization, and evaluation of a mass spectrometry-based electronic
nose (MS e-nose) for early detection of unwanted fungal growth in bakery products. Seven fungal
species (Aspergillus flavus, Aspergillus niger, Eurotium amstelodami, Eurotium herbariorum, Eurotium
rubrum, Eurotium repens, and Penicillium corylophillum) were isolated from bakery products and
used for the study. Two sampling headspace techniques were tested: static headspace (SH) and
solid-phase microextraction (SPME). Cross-validated models based on principal component analysis
(PCA), coupled to discriminant function analysis (DFA) and fuzzy ARTMAP, were used as data
treatment. When attempting to discriminate between inoculated and blank control vials or between
genera or species of in vitro growing cultures, sampling based on SPME showed better results than
those based on static headspace. The SPME-MS-based e-nose was able to predict fungal growth
with 88% success after 24 h of inoculation and 98% success after 48 h when changes were monitored
in the headspace of fungal cultures growing on bakery product analogues. Prediction of the right
fungal genus reached 78% and 88% after 24 and 96 h, respectively.
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INTRODUCTION

Microbial spoilage is a major problem in bakery products
since it can induce nutritional losses, off-flavors, and formation
of mycotoxins or potentially allergenic spores. This situation
can lead to an organoleptic deterioration of already marketed
bakery products, which indeed threatens consumers’ confidence
and, therefore, results in important economical losses. This is
the reason for a growing need to find a method to conveniently
assess the degree of fungal growth in bakery products at a very
early stage and before it becomes visible (1).

Classical techniques based on microbiological methods such
as CFU (colony-forming units) determination are time-consum-
ing and they cannot give on-line responses. Specific chemical
markers such as ergosterol have now become commonly used
as a method for the quantification of fungal biomass in food.
However, they are nonspecific, they do not provide any
information on the species present, and they require a laborious
sample preparation (2).

On the other hand, it is known that fungi produce volatile
compounds during both primary and secondary metabolism that
can be used as markers to detect food spoilage, unwanted fungal

growth, or even as taxonomic identifiers that can determine the
presence of a given species. This idea was initially exploited in
the field of cereals (3, 4). Research studies correlated fungal
activity with the production of volatile metabolites, CO2, and
CFU. Schnürer et al. (2) and Magan and Evans (5) reviewed
some studies where GC-MS had been used to characterize and
analyze volatile profiles of fungal cultures, listing volatiles
identified in different growing substrates. More recently, GC-
MS intensity peaks from key volatiles have been used by Olsson
et al. (6,7) to evaluate the mycological quality of barley grains
and to predict levels of ochratoxin A and deoxynivalenol.

Since the volatile headspace is complex and should be
evaluated as a whole, techniques that mimic the human olfactory
system (the so-called electronic noses) have already been
proposed. Electronic noses based on different types of nonspe-
cific sensors (i.e., metal oxide, conducting polymer, or quartz
microbalance sensors) have been evaluated in fungal, bacterial,
and yeast monitoring in food such as bakery products (1), cereal
grains (5-8), cheese (9), water (10), bread (11), meat (12), and
milk (13). Despite the efforts, e-noses based on nonspecific
semiconductor sensors still suffer from serious drawbacks such
as poor sensitivity, poor selectivity, and long-term drift. Novel
electronic olfactory systems based on mass spectrometry seem
to improve drift problems with respect to other classical e-nose
technologies. Even so, MS e-nose suffers from low temporal
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drift. Nevertheless, this paper does not consider drift as an issue
since measurements were done in a short period of time.
Preconcentration and extraction techniques such as solid-phase
microextraction (SPME) can increase the sensitivity and repro-
ducibility of MS e-noses (14, 15). Since Nilsson et al. (16) used
SPME as a solvent-free extraction method for analysis of volatile
metabolites emitted byPenicillium species, many researchers
have used SPME as a tool for sampling volatile fungal
metabolites (17,18).

This paper presents a study on the design, optimization, and
evaluation of a MS-based electronic nose for early fungal growth
detection in bakery products. Two different experiments were
carried out. The first one was designed to choose the best
sampling technique (SH or SPME) to be coupled to a MS-based
e-nose in order to monitor fungal growth. The second study
was designed to evaluate the performance of the MS e-nose
optimal configuration in early detection of in vitro and in situ
growing fungal cultures.

MATERIALS AND METHODS

Samples.Seven fungal species (Aspergillus flaVus, AF;Aspergillus
niger, AN; Eurotium amstelodami, EA;Eurotium herbariorum, EH;
Eurotium rubrum, EU;Eurotium repens, ER; andPenicillium corylo-
phillum, PE) were isolated from bakery products. One isolate from each
species was used for the present study.

For in vitro studies, 0.90 aw slants of 2% wheat flour agar medium
were prepared in 20-mL headspace vials and needle-inoculated with
10-6 spores mL-1 suspensions (adjusted by use of a Thoma chamber)
of the fungal cultures mentioned above. Uninoculated vials with agar
medium were used as control blanks (BL).

In situ studies were performed on bakery product analogues prepared
as described by Abellana et al. (19), adjusted to a water activity of
0.95. Pieces measuring 8× 8 × 20 mm were introduced in 20-mL
headspace vials. Analogues were needle-inoculated at random with the
seven cultures mentioned above and, again, uninoculated analogues
were used as control blanks. Once sealed, all vials were incubated at
25 °C until their measurement. Incubation periods ranged from 24 h to
7 days depending on the experiments carried out.

MS E-nose Configuration. A Shimadzu QP 5000 GC/MS (Shi-
madzu Corp., Tokyo, Japan) was used to implement a MS-based e-nose.
The instrument was equipped with a deactivated PR-100052 5 m×
0.25 mm ID precolumn (Teknokroma, St Cugat Del Vallès, Barcelona,
Spain) that only acted as a transfer line from the injector port to the
mass detector. The column was kept isothermal at 250°C to coelute
all volatile components in one single peak. This implies that the
components in the headspace of the vials passed directly to the mass
detector without any chromatographic separation. In this manner, for
any given measurement, the resulting mass spectrum gives a fingerprint
that is characteristic of the volatiles present in the headspace of samples.
Helium flow was set to 1.4 mL/min. The mass spectrometer operated
in the electron impact ionization mode (70 eV) and acquired in a scan
range fromm/z35 to 120 at 0.5 scan/s. Ion source temperature was set
at 250°C.

Two different sampling techniques (SH and SPME) were evaluated
as the best candidates to be coupled to the MS-e-nose.

Choosing the Best Sampling Technique. (A) Static Headspace
Optimization. Sampling based on a static headspace autosampler was
done by coupling an HP-7694 (Agilent Technologies) to the MS-based
e-nose. All experiments dealing with MS e-nose optimization were
carried out on in vitro growing cultures for 10 days. The main sampling
parameters that influence sensitivity when working with the SH
technique, namely, temperature of equilibration and vial equilibration
time, were modified to improve fungal culture classification and fungal
growth detection.

To select the optimal temperature, three oven temperatures, 50, 80,
and 100 °C, were tested. For each temperature, a batch of 16
measurements corresponding to two replicates for each of the seven
species plus two additional control blanks incubated for 10 days was

performed. Equilibration time was fixed at 5 min in the three batches
of measurements. The temperature of the loop and the transfer line
were always kept at 5°C above oven temperature to avoid condensation.
Each vial was pressurized with helium (i.e., the carrier gas) for 12 s.
Then, the 3-mL internal loop of the headspace autosampler was filled
with volatiles coming from headspace of the fungal cultures, and finally
volatiles were injected into the gas chromatograph. The goal was to
determine whether the instrument could distinguish between inoculated
and blank vials. A secondary goal was to observe whether the system
was able to classify samples according to fungal genera.

In a second experiment, equilibration temperature was kept constant
at 50°C and equilibration time was increased to 50 min. The remaining
parameters were kept as described above. A total of 32 samples (four
replicates of eight different types of vials) were measured.

(B) SPME-MS E-nose Measurements.Sampling based on SPME
was performed with a 75-µm Carboxen/PDMS fiber purchased from
Supelco (Supelco Park, Bellefonte, PA). Jelen (18) compared four
SPME fibers used to perform an extraction of volatile metabolites from
fungal cultures. This study showed that the highest amount of isolated
volatiles expressed as total peak area was observed for fibers based on
Carboxen (CAR/PDMS and CAR/DVB/PDMS). Fibers based on
Carboxen are the best choice in terms of sensitivity to extract low
molecular weight analytes such as low-chain alcohols, ketones, and
aldehydes. The main volatile metabolites involved in early stages of
fungal growth that have been cited in the scientific literature belong to
this type of molecules. As the goal was to detect the production of
these volatiles as early as possible, priority was given to sensitivity
and that is why a CAR/PDMS-based fiber was chosen. Prior to any
extraction, the fiber was conditioned following the manufacturer’s
recommendations. In each measurement, the fiber was introduced into
the vial and exposed to the headspace of fungal cultures for 20 min at
room temperature. Thermal desorption of volatiles trapped on the fiber
was conducted for 3 min in the chromatograph injection port at 300
°C. The split valve was closed during desorption. The fiber was always
left five additional minutes to ensure its complete cleaning.

Three in vitro replicate vials of each fungal species plus control
blanks were prepared and incubated for 10 days. Each replicate was
measured three times by the SPME-MS e-nose. Therefore, a total of
72 measurements were performed. The aim was to discriminate
inoculated samples from blank vials and to evaluate whether the
instrument could classify samples according to their genera and species.

In Vitro Fungal Growth Monitoring. The next goal was to evaluate
the performance of the MS-based e-nose to monitor early stages of
fungal growth. SPME was used since it was determined that it was the
best sampling method. Two replicates of each of the seven fungi plus
two control blanks were grown on 2% wheat flour agar. Samples were
kept under incubation and extractions were made once a day, obtaining
a total of 16 experimental points at 48, 72, 96, and 168 h after
inoculation.

In Situ Fungal Growth Monitoring. A final experiment designed
to simulate a real application was performed. The aim was to use the
final prototype in order to discriminate between spoiled and safe bakery
products. Eight blank control vials containing cake analogues, eight
replicate vials containing cake analogues inoculated with EA, and four
replicates inoculated with ER, EU, EH, AN, AF, and PE were measured.
SPME extractions and MS e-nose measurements were performed in
every vial 24, 48, 72, 96, and 168 h after inoculation. Overall, 40
experimental points were obtained for each sampling time (1, 2, 3, 4,
and 7 days after inoculation). The system was also evaluated as a tool
to discriminate among fungal species.

Multivariate and Pattern Recognition Analysis. Data generated
by the e-nose device (in any of its different configurations) were
collected and processed by use of written-in-house software based on
MATLAB 6.5 (The Mathworks, Natick, MA). An unresolved single
peak was obtained for each measurement. Averaging mass spectra along
the detected peak generated a response spectrum. Since measurements
were performed in scan mode fromm/z35 to 120, the average intensity
of each mass could be used as a variable (or sensor). In this manner,
an experimental data matrix was built. The number of rows was the
number of samples measured in each experimental batch, while the
number of columns was 86, corresponding to eachm/z scanned. A
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principal component analysis (PCA) was applied to each response
matrix, achieving a reduction in dimensionality. By use of the first 10
principal components, 100% of the total data variance was gathered.
A reduced response matrix having 10 columns corresponding to scores
of the first 10 principal components was obtained. Then, a discriminant
function analysis (DFA) was performed on the reduced matrix.
Eigenvalues obtained from the DFA were used as input variables to a
fuzzy ARTMAP neural network that gave a categorization of fungal
cultures according to genera or species depending on the application.

The performance of the model was evaluated by the leave-one-out
cross-validation approach. In this method, a different row (measurement)
from the original matrix is left out at each iteration. The remaining
rows conform the training matrix, which is reduced by a PCA
projection, processed by a DFA, and fed to the fuzzy ARTMAP training
algorithm after scaling coordinates between 0 and 1. The procedure is
then validated with the vector that had been left out. The validation
vector (not used for training) is then projected against the PCA model.
Then, the PCA scores are projected onto space of the canonical variables
of the trained DFA. Finally, the DFA projection coordinates of the
validation vector are fed to the neural network model, which produces
a classification result. The whole process is repeatedN times,N being
the number of measurements included in the data matrix, so that each
measurement is used in one iteration for evaluation purposes and inN
- 1 iterations for training. The fact that for each iteration the validation
vector is not used in the training process ensures that the vector is
completely new to the processing system.

RESULTS AND DISCUSSION

Reduction ofm/zVariable Dimensionality by Use of PCA.
All the results cited bellow were obtained by applcation of
multivariate analysis to the response matrix. This matrix was
formed by as many rows as experimental measurements made
in each study and as many columns asm/zvariables scanned.
According to Dittmann and Nitz (20), thesem/zvariables can
be used as an array of sensors to emulate a classical electronic
nose. In their paper, they claim that, in most cases, it is not
useful to work with such a great number of sensors and only a
very small number of ion fragments are suitable for setting up
a sensor array since meaningless fragments introduce noise into
the system. They also consider that there is no way to correctly
selectm/z fragments, unless there is a previous full chromato-
graphic run. Finally, they discuss reliable strategies for selecting
the optimal array configuration, based on previous knowledge
of the analytes that are important for the application. This
previous knowledge is normally based on time-resolved analysis
to identify (and quantify) the volatiles present in the headspace
of the samples to be studied. This leads, unavoidably, to more
traditional analytical techniques such as GC-MS.

On the other hand, applying a PCA analysis leads to a linear
combination ofm/z variables that gathers the highest amount
of variance and compresses information by eliminating redun-
dancy and collinearity. In this manner, the best combination of
m/zvariables can be chosen without the need to perform a costly
and lengthy initial study to determine the most relevant ion
fragments to be monitored. This means that previous fully
resolved chromatographic runs can be avoided since no previous
knowledge from the samples is required.

The reduced response matrix obtained from the PCA analysis
is then used as the input matrix to perform a DFA. DFA is a
supervised model that finds a function-based projection that
minimizes distances between measurements from the same
category and maximizes distance between centroids of each
category. Finally the two first factors resulting from the DFA
were used as input variables to a fuzzy ARTMAP neural
network as described before.

Static Headspace Optimization.A preliminary analysis of
the results on increasing oven temperature in SH was performed

by plotting PCA scores at 50, 80, and 100°C separately. At 50
and 80°C those plots did not show any clustering, and samples
with fungal contamination and blank vials overlapped. At 100
°C, inoculated samples clustered together, clearly separated from
blank vials. Setting a headspace oven temperature of 100°C
permitted the extraction of a larger quantity of volatiles, which
enhanced the sensitivity of the system, allowing it to achieve a
better discrimination than at 50 or 80°C. A cross-validated fuzzy
ARTMAP classification of the 16 experimental points at 100
°C achieved an 88% success rate when trying to determine
whether the vial was inoculated or not. When attempting to
determine the fungal genera, the success rate decreased to 56%
(Table 1). Measuring samples at 100°C may accelerate
oxidation processes modifying the qualitative volatile pattern
profiles. This may be very difficult to control and could
introduce noise in our mathematical model.

Therefore we designed a second experiment where temper-
ature of equilibration remained constant at 50°C and equilibra-
tion time was increased. The concentration of an analyte in the
headspace usually follows a linear dependence with equilibration
time until it comes to a point where the concentration becomes
stable. At this point volatiles reach equilibrium and achieve their
maximum concentration in the headspace, while the composition
of volatile patterns remains stable. That should enhance the
repeatability on MS e-nose measurements. Sanz et al. (21)
studied equilibration time inArabicacoffee and they concluded
that when the equilibration time increased, the quantity of
volatile compounds also increased but in an irregular way,
depending on the chemical family considered. Similarly, every
analyte from each fungal culture has a different equilibration

Table 1. Success Rate Comparison between the Two Different
Sampling Techniques Studieda

technique
goal discrimination

between

total
exptl

points failures
success
rate (%)

HS−MS, 100 °C fungal growth 16 2 88
genera 16 7 56

HS−MS, 50 min fungal growth 32 1 97
genera 32 13 59

SPME−MS fungal growth 72 0 100
genera 72 0 100
species 72 6 92

a Data processing was performed with PCA−DFA−fuzzy ARTMAP models. The
goal was to classify between inoculated and uninoculated vials (fungal growth)
and between genera or species. All tests were performed over in vitro growing
cultures.

Figure 1. Two-dimensional DFA plot from 10 days in vitro growing cultures
measured with the SH−MS e-nose configuration (50 min equilibration time,
50 °C temperature).
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time. An equilibration time equal to 50 min was chosen to ensure
maximum concentration of volatile compounds on the head-
space.

This ensured improved repeatability and sensitivity. Since four
in vitro replicates for each type of sample were prepared, 32
measurements were performed. A 2D DFA plot (Figure 1) of
the reduced response matrix shows two clearly separated clusters
corresponding to inoculated and blank vials, respectively. A
fuzzy ARTMAP neural network achieved a 97% success rate
in the discrimination between inoculated and uninoculated vials.
This success rate fell down to 59% when attempting to
discriminate among fungal genera (Table 1).

Results of SPME Sampling.A total of 72 measurements
were performed to test in vitro SPME-MS measurements.
Therefore, the resulting data matrix had 72 rows and 86 columns
(m/z ranged from 35 up to 120).Figure 2a shows a 2D DFA
plot of the restricted response matrix, whileFigure 2b shows
a 2D score plot from the original data matrix. Samples belonging
to Aspergillus, Penicillium, andEurotiumclustered together with
low dispersion and without overlapping with blank controls,
which were clearly separated from the rest. The first two factors
from DFA accounted for 95% of the variance in the data. In
the case of the PCA, the variance gathered by the two first
factors decreased to 88%. In this case,PenicilliumandEurotium
isolates appear to overlap. However, use of the third principal
component leads to discrimination between these two genera
(Figure 3). In both 2D DFA and PCA plotsE. amstelodami
can be distinguished from the otherEurotiumspecies. Looking
at Aspergillus samples, there is a clear separation between
speciesA. flaVus andA. niger.

Applying DFA coupled to a fuzzy ARTMAP neural network
model resulted in a 100% success rate when discriminating
between fungal growth and blank vials. Also a 100% classifica-
tion was achieved when classifying fungal genera. The attempt

to classify samples according to their fungal species reached a
92% success rate (Table 2). The system misclassified seven
measures out of 72, confusing two EH, three ER, one AF, and
one AN. All failures were mistaken between species from the
same genus.

Both PCA and DFA plots show a clear distinction between
E. amstelodamiand otherEurotiumspecies. These results seem
to be in good agreement with previous works where Börjesson
et al. (3, 4, 22) described some differences between the volatile
pattern profiles fromE. amstelodamiand other fungal species
due to its lower percentage of alcohol release (50% forE.
amstelodamivs 80% in other fungal species studied).

The SPME technique gave better results than the SH
technique when applied as the sampling system coupled to our
MS-based e-nose. It achieved better repeatability and it was
more sensitive due to its ability to concentrate volatile analytes.
SPME allows distinguishing between fungal genera or even
between several species. On the basis of these results it was
decided to continue the studies with the SPME-MS e-nose
configuration since the instrument is meant for the fast detection
of fungal growth at early stages.

In Vitro Fungal Growth Monitoring. Table 2 shows the
success rates in the classification of in vitro samples between

Figure 2. Two-dimensional projections from 10 days in vitro growing cultures measured with the SPME−MS e-nose configuration. (a, left) DFA; (b, right)
PCA.

Figure 3. Three-dimensional PCA scores plot from 10 days in vitro growing
cultures measured with the SPME−MS e-nose configuration.

Table 2. Results Achieved by Use of a PCA−DFA−Fuzzy ARTMAP
Model for Classifying Blank/Inoculated Vials (Fungal Growth) and
Generaa

fungal
growth (h)

goal differentiation
between

total
exptl points failures

success
rate (%)

In Vitro Measurements
48 fungal growth 16 0 100

genera 16 0 100
72 fungal growth 16 0 100

genera 16 0 100
96 fungal growth 16 0 100

genera 16 0 100
168 fungal growth 16 0 100

genera 16 0 100

In Situ Measurements
24 fungal growth 40 5 88

genera 40 17 58
48 fungal growth 40 1 98

genera 40 9 78
72 fungal growth 40 0 100

genera 40 9 78
96 fungal growth 40 0 100

genera 40 5 88
168 fungal growth 40 0 100

genera 40 5 88

a Tests were performed for in vitro and in situ growing fungal cultures, and
sampling was always performed for SPME.
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two categories (inoculated and blank vials) and between four
categories (corresponding to three fungal genera plus blank
vials). These measurements were performed between 48 and
168 h after inoculation. By application of DFA-fuzzy ART-
MAP on the reduced response matrix, the system achieved a
100% success rate after 48 h from inoculation when attempting
to discriminate both between inoculated and blank samples and
among fungal genera. This demonstrates that the SPME-MS-
based e-nose is a suitable tool for on-line in vitro monitoring
and early detection of unwanted fungal spoilage.

One of the advantages of a MS-based e-nose over e-noses
based on gas sensors or other devices is the possibility to obtain
structural information from the samples. Intensity on the mass
detector is a function of the ion patterns in the fragmentation
of each molecule present in the headspace of fungal cultures.

Therefore, depending upon the molecules present in the head-
space, there will be different mass intensities detected by the
instrument.

Making a loadings and scores plot on the response matrix
enables us to establish qualitative correlations between samples
and variables (m/z fragments). We constructed PCA models for
in vitro measurements at 48, 72, 96, and 168 h.Figure 4 shows
2D PCA score plots with their corresponding loading plots for
each batch performed at the different incubation times. Electron
impact ionization mode (EI) causes considerable fragmentation,
leading to overlapping fragments and parent ions. Because of
the poor selectivity of them/z fragments, they cannot be directly
correlated with the presence or absence of a volatile. Neverthe-
less, mapping pattern fragmentation by means of loading plots
could give some relevant information. In this case ions corre-

Figure 4. Two-dimensional PCA scores and loadings plots corresponding to 48, 72, 96, and 168 h of headspace monitoring of in vitro growing cultures.
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sponding to the highest loading values for the first three PC
were kept to perform loading plots.Figure 4 shows an inverse
correlation between uninoculated control blanks andm/z 44.
This inverse correlation means that samples with low or no
presence ofm/z 44 correspond to blank controls and the rest
share a high presence ofm/z 44. Since fragment ofm/z 44
corresponds to the base peak of CO2, the relationship between
the evolution of accumulated CO2 and fungal growth was found
to be significant. The MS-based e-nose differentiates between
inoculated and uninoculated samples mainly on the basis of the
production of CO2 by fungi. This is in good agreement with
the literature. Börjesson et al. (3) measured the concentration
of CO2 produced byA. flaVus, A. amstelodami, Penicillum
cyclopium, andFusarium culmorumduring 14 days of fungal
growth and showed a continuous rise in CO2 concentration. They
also studied the volatiles released by six fungal species on grains
and found that the relationship between accumulated CO2

evolution and fungal growth was significant (22). The predomi-
nating presence of CO2 in our PCA model is due to the sealing
of the vials with silicon septa once they have been inoculated.
The presence of other ions such asm/z41, 42, 43, 45, 46, 55,
and 57 can be considered as second-order and less relevant ions.
They can be associated to other related fungal metabolites such
as ethanol (m/z 45 and 46), 3-methyl-1-butanol (m/z 41, 42,
and 55), 2-methyl-1-propanol (m/z41-43), and 1-octen-3-ol
(m/z57). This is in good agreement with the review paper by
Magan and Evans (5). In their study they reviewed the types of

volatiles produced by grain spoilage fungi and listed the most
common volatiles found and the fungal species involved. The
major volatile compounds were found to be 3-methyl-1-butanol,
2-methyl-1-propanol, 1-octen-3-ol, and other 8-carbon ketones
and alcohols.

Anyway, the origin of these fragments cannot be ensured.
As Figure 4 shows, the loading maps remained almost
unchanged from 72 to 168 h of incubation. The only remarkable
changes in the loading maps appear betweem the plots corre-
sponding to 48 and 72 h of fungal growth. Finally, the presence
of ion 55 close to ions 42 and 41 can indicate the raising of
3-methyl-1-butanol after 178 h of fungal growth.

In Situ Fungal Growth Monitoring. Results obtained on
the in vitro preliminary experiment encouraged us to study the
performance of the electronic nose on in situ growing cultures
over bakery product analogues. This is a much more realistic
but difficult task since analogues can produce their own volatile
pattern profiles; these volatiles produce additional signals in the
mass detector that introduce noise into the fungal growth
predictive model.

Table 2 summarizes the results obtained when bakery
products analogues were measured along the first stages of
fungal spoilage. In situ monitoring was performed 24, 48, 72,
96, and 168 h after inoculation. Distinction between blank and
inoculated samples reached an 88% success rate 24 h after
inoculation, 98% after 48 h, and 100% after 72 h.Figure 5
shows 2D DFA plots corresponding to fungal cultures sampled

Figure 5. Two-dimensional DFA projections corresponding to 24, 48, 72, 96, and 168 h of headspace monitoring of in situ growing fungal cultures.
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at 24, 48, 72, 96, and 168 h after incubation. In the first plot
(24 h after inoculation), blank vials overlap with inoculated
samples. As the time of incubation increases, the dispersion
between samples belonging to the same class decreases and the
difference between classes grows. After 48 h, uninoculated and
blank samples can be clearly distinguished. This is in good
agreement with our prediction model that achieved a 98%
success rate after 48 h. Moreover, samples belonging to the same
genus appear to cluster together, a tendency that becomes more
pronounced as the time of incubation increases. Once again these
results are in good agreement with our predictive model because
after 48 and 72 h the instrument achieved a 78% success rate
and 88% after 96 h in the prediction of fungal genera

From the results obtained on the monitoring of in vitro fungal
growth, it can be concluded that during the first 24 h fungi are
mainly producing CO2 and other common metabolites associated
with primary fungal growth and structures formation such as
3-methyl-1-butanol, 2-methyl-1-propanol, and 1-octen-3-ol in-
dicative from fungal presence. According to Börjesson et al.
(3), it seems that species identification may not be possible at
this early stage, since the compounds produced in the highest
amounts are similar for different species. The volatile pattern
profile is, therefore, very similar and does not allow discrimina-
tion between species. Characteristic volatiles that might allow
species classification are mainly produced during secondary
metabolism. After 48 h of incubation, the system is able to
predict fungal genera with a 78% success rate, which implies
that secondary metabolism has started. Sporulation happens 72-
96 h after inoculation depending on fungal species, which leads
to an increase in several volatile compounds generating different
pattern profiles for each fungal genus or species. This allows
the best discrimination results in our model.

Taking into account the results obtained with the measure-
ments performed on in situ samples, a real quality analysis
application in a bakery factory seems feasible. Since SPME
sampling time was 20 min and desorption time was 5 min, each
measurement took 25 min to be executed. In a real application,
many SPME fibers can be used in parallel (e.g., four) and the
system can get a throughput of a measurement every 5 min.
Moreover, since some quality control departments already have
GC-MS equipment, they can convert their units into a MS-
based E-nose in a rather straightforward manner, just coupling
the optimal sampling system and using additional pattern
recognition software.

The next step should be focusing on tuning the prototype to
work in a bakery plant, where it would be trained to monitor a
certain number of samples from each batch. These measurements
made at the quality control laboratory would allow detection
of batches likely to be spoiled before their expiration date and
thus produce a rejection decision before the batch leaves the
production plant.
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